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The form of the momentum equation for one-dimensional (vertical) unsteady mean 
motion of solid particles in a fluidized bed or a sedimenting dispersion is established 
from physical arguments. In  the case of a fluidized bed that is slightly non-uniform 
this equation contains two dependent variables, the local mean particle velocity V 
and the local concentration $, and several statistical parameters of the particle 
motion in a uniform bed. All these parameters are functions of $ with clear physical 
meanings, and the important ones are measurable. It is a novel feature of the 
equation that i t  contains two explicit contributions to the bulk modulus of elasticity 
of the particle configuration, one arising from the transfer of particle momentum by 
velocity fluctuations and one arising from the effective repulsive force exerted 
between particles in random motion. This latter contribution, which proves to be the 
more important of the two, is related to the gradient diffusivity of the particles, a key 
quantity in the new theory. 

The equation of mean motion of the particles and the equation of particle 
conservation are sufficient to determine the behaviour of a small disturbance with 
sinusoidal variation of V and $ in the vertical direction. Particle inertia forces in such 
a propagating wavy disturbance may promote amplitude growth, whereas particle 
diffusion tends to suppress it, and instability occurs when the particle Froude 
number exceeds a critical value. Rough estimates of the relevant parameters allow 
the criterion for instability to be put in approximate numerical form for both gas- 
fluidized beds (for which the flow Reynolds number a t  marginal stability is small) 
and liquid-fluidized beds of solid spherical particles (for which the Reynolds number 
is well above unity), although more information about the particle diffusivity in 
particular is needed. The predictions of the theory appear to be in qualitative accord 
with the available observational data on instability of gas- and liquid-fluidized 
beds. 

1. Introduction 
Stationary solid particles in an open vertical cylinder which are supported by a 

plate spanning the cylinder form a ‘packed bed’. If the plate is porous and gas or 
liquid is forced through the plate from below, the bed remains packed until the flow 
rate reaches a certain value. At this critical value the bed expands a little and the 
particles become mobile or ‘fluidized’. Further increase of the flow rate to  a new 
steady value causes the bed to expand further. Under certain conditions this further 
expansion is uniform, and the bed remains statistically homogeneous, with the 
number density of the particles taking just the value required for the weight of a 
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particle to be balanced by the mean drag force exerted by the fluid. Chemical 
engineers use such a fluidized bed as a means of obtaining a high rate of heat or mass 
transfw between the particles and the fluid and between the particles and sidewalls. 

Particles dispersed throughout the fluid in a stationary closed vertical cylinder 
likewise fall vertically relative to the fluid under the action of gravity, and a 
dispersion of identical particles that  is initially statistically homogeneous usually 
remains homogeneous during sedimentation, except a t  the top and bottom of the 
cloud. It is observed that thc steady mean fall spced of the particles is a decreasing 
function of the particle concentration, corresponding to the expansion of a uniform 
fluidized bed with increase of the flow rate. This ‘hindered setting ’ is a consequence 
of hydrodynamic interference of the particles ; the more crowded they are, the larger 
is the drag coefficient of each particle. 

A fluidized bed of particles is simply a cloud of sedimenting particles referred to 
different axes, and one would expect the theoretical and experimental investigations 
of the two situations to have proceeded together. In  fact, they have developed 
separately, presumably because the different technologies associated with fluidized 
beds in chemical engineering and with sedimentation processes in colloid science and 
mining and reservoir engineering are associated with different parameter ranges. 
Fluidized beds have mostly been studied with larger particles, such that the 
Reynolds number of the flow about a particle is well above unity, whereas 
sedimentation processes in practice usually involve a liquid continuous phase and 
smaller particles for which the Reynolds number is small. The subject matter of this 
paper concerns a range of particle sizes for which the particle Reynolds numbers are 
not all either large or small compared with unity, and concepts and results developed 
in the two fields will be used. 

It is a common and practically important feature of gas-fluidized beds that, a t  flow 
rates above a certain value, ‘bubbles’ in which the particle concentration is evidently 
quite small form and rise to the surface of the bed. For fine particles of powder 
fluidized in air a t  normal pressure the minimum flow rate for the occurrence of 
bubbles is found to be clearly above the minimum flow rate for fluidization (Geldart 
1973), whereas for solid particles with diameters above about 200 pm fluidized in air, 
bubbles appear a t  flow rates close to the minimum for fluidization. Bubbles of 
relatively clear fluid also appear to  form spontaneously in liquid-fluidized beds, 
although often only for flow rates well above the minimum for fluidization and for 
particles of large size or density (Davidson & Harrison 1963). 

There is an enormous literature recording investigations of the occurrence, the 
properties, and the effects of bubbles in fluidized beds, but their origin is not well 
understood. A natural and common speculation is that bubbles originate in some 
instability of a statistically uniform fluidized bed which causes growth of the 
amplitude of fluctuations in the particle concentration. A consideration of types of 
small disturbance to which a uniform fluidized bed might be unstable suggests a 
wavy disturbance with variation of the concentration in the vertical direction alone, 
sincc such a disturbance interacts with the mean motion of the particles as a 
consequence of the dependence of the mean velocity of particles on the local 
concentration. 

It was pointed out by Kynch (1952) that, when the particle concentration is a 
sufficiently slowly varying function of the vertical position coordinate x (measured 
downwards), the mean vertical velocity of a sedimenting particle may be assumed to  
be determined by the local number density n and so to be approximately equal to 
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the mean velocity in a uniform dispersion with the same concentration, U(n) say. 
The differential equation expressing conservation of particles then becomes 

an a(nU) an d(nU)an -+-=-+--- 
at ax at dn ax (1.1) - 0, 

showing that a small slowly varying departure from a uniform concentration 
propagates without change of form with the vertical velocity 

dU 
dn 

U+n--; 

and since dJUI / dn < 0 this propagation velocity is upward relative to the particles. 
Kynch had in mind small sedimenting particles for which the flow Reynolds number 
is small, but the same remarks apply to any dispersion of identical particles 
regardless of their size. Now the effect of inertia of the particles, which is neglected 
in Kynch’s analysis, will be to cause some delay in the adjustment of the mean 
particle velocity to a change in the local concentration, and therein lies the 
possibility that over one cycle of a periodic wave there might be an increase in the 
amplitude of oscillation of the particles. 

The observation of bubbles in a fluidized bed thus provides some motivation for 
a consideration of the instability of a uniform fluidized bed, the expectation being 
that the vertical mean density gradients associated with a wavy disturbance of 
exponentially increasing amplitude might ultimately cause gravitational overturning 
on the scale of the wavelength, out of which bubbles of nearly clear fluid form in 
some way. That expectation has not yet been confirmed, either theoretically or 
experimentally. But regardless of the precise connection with bubbles, the instability 
of a uniform fluidized bed is a sufficiently interesting phenomenon in its own right to 
justify full investigation. 

The specific purpose of this paper is to consider theoretically the effect of particle 
inertia forces and other consequences of non-negligible spatial gradients of con- 
centration on vertically propagating concentration waves of small amplitude, 
and t,o look in particular for conditions under which the amplitude grows 
exponentially. This is not a new problem, and there are many published papers that 
purport to show theoretically the existence of growing waves. However, no rational 
theory in full accord with the known facts has yet been put forward; and even 
though there is a general belief that a uniform fluidized bed may be unstable, the 
underlying physical mechanisms are not yet clear. The shortcomings of the existing 
theories derive, I believe, from the unsatisfactory nature of the proposed models or 
equations from which the behaviour of a disturbance has been determined. An 
important preliminary purpose of the paper therefore is to establish carefully, with 
plausible physical reasoning and a minimum of hypothesis and model making, the 
form of the equations describing one-dimensional unsteady mean motion of the 
particles in a fluidized bed. Since the motion of a particle is random and averaging 
of dependent variables is essential, we cannot expect to be able to establish a closed 
finite set of equations that will be sufficient to determine the mean motion by 
calculation alone. Some hypotheses concerning the relation between mean quantities 
will be needed, as in the analogous problem of turbulence in pure fluid, but we shall 
try to avoid the introduction of any variables or material parameters that  do not 
have a clear physical meaning and are not calculable or measurable, a t  least in 
principle. 
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Since we are proceeding ab initio, and are not building on previous theoretical 
developments, it is not necessary to describe published work at  this stage. Reference 
will be made to observations and results obtained by other authors in 96. 

An index of symbols specifying their meanings or the places in the text where they 
are defined may be found a t  the end of the paper. 

2. The equations governing one-dimensional unsteady mean motion of the 
particles 

In  this section we consider the general form of the equations that govern the mean 
motion of the particles in the vertical direction, with questions about the values of 
parameters being left until later. 

The fluidizing fluid under consideration may be either a liquid or a gas, with 
density p f .  The particles are assumed to be identical, and to have uniform density 
pp and mass m, and to be large enough for effects of Brownian motion of the particles 
to be negligible. No specific assumption need be made initially about the nature of 
the particle material, although it is the practical case of solid particles falling relative 
to  the fluid in a fluidized bed that will later be a basis for approximations and 
empirical formulae. Both fluidizing fluid and particles are assumed to be 
incompressible, 

The fluidized bed is assumed to be statistically homogeneous in each horizontal 
plane. The mean particle velocity is (exactly) vertical, and is not necessarily steady. 
Mean values, to be denoted by angle brackets where a special symbol is not 
introduced, can be regarded as ensemble averages, that is, averages over a large 
number of realizations of the system with the same macroscopic external conditions. 
In  view of the horizontal homogeneity an ensemble mean is equivalent to a spatial 
average over a horizontal plane. If we imagine two horizontal planes close together 
a t  vertical position x (measured downward), a count of the number of particle centres 
found instantaneously between two adjoining large areas of these planes gives the 
mean number density n(x ,  t ) .  ‘Close together’ here means that the separation is small 
compared with the distance over which the change in n is appreciable. And if the 
vertical component of velocity of each particle is recorded, that determines a mean 
particle velocity V ( x , t )  and a fluctuation v about that  mean with statistical 
properties such as (v’). V and v are signed quantities and are positive when directed 
downwards, like x and the gravitational acceleration g. 

Now since the particles and fluid are incompressible, the flux of material volume 
across a large area of a horizontal plane is independent of x. We shall assume that 
this volume flux is also time-independent, that is, that there is no acceleration of the 
mixture as a whole. The axes of reference adopted here are such that the mean flux 
of material volume across a horizontal plane is zero. These axes of reference are more 
natural for observations of sedimentation of particles in a stationary container than 
for a fluidized bed of particles, but we shall nevertheless refer to the particles as a 
fluidized bed for lack of an alternative collective noun. I hope that those who are 
more familiar with the literature of fluidized beds than that of sedimentation will 
have no difficulty in adapting their thinking to these axes, which seem to be more 
appropriate for the basic dynamics. The results are of course unaffected since these 
are not accelerating axes. 

The most significant measure of the local concentration of the particles is the 
particle volume fraction #(x, t ) ,  where 

#pp = nm. (2.1) 
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The ‘voidage’ fraction 1 -q5 is often introduced as an alternative to q5. In  view of 
the choice of reference frame the mean flux of fluid volume across a horizontal 
plane surface is -#V,  and the mean vertical component of the velocity in the fluid is 

In  a statistically homogeneous fluidized bed the mean particle velocity is 
independent of x and t ,  and is a function of q5 and of the particle properties, to be 
denoted as U(q5). This function of q5 is known empirically for solid spherical 
particles. 

Each of the governing equations to be established expresses conservation of some 
quantity, particle number or particle momentum. By considering first the rate of 
change of number of particle centres located within a fixed cylindrical domain with 
vertical generators and horizontal plane end faces of large area at  arbitrary positions 
we find 

- $V/( 1 - $). 

an a(nV)  -+- = 0. 
at ax 

When the spatial gradients of concentration are so small that the mean particle 
velocity depends only on the local concentration and in the same way as in a 
homogeneous bed, so that V z ?I($), then (2.2) is sufficient for the determination of 
the history of small disturbances, as Kynch (1952) showed. But in more general 
circumstances the effect of particle inertia is significant and a second equation is 
needed to match the two independent variables $ and 8. 

The momentum equation is best approached formally in order to minimize the risk 
of overlooking some relevant physical process. We consider the balance of particle 
momentum in the same cylindrical control volume, of volume r and area A of each 
of the end faces, and begin with the verbal statement : 

rate of change of mean momentum of particles with centres in r 
= mean flux of particle momentum inward across the boundary of r 

+mean force exerted on particles in T by gravity (or any other 

+mean force exerted on particles in r by fluid 
externally imposed body force) 

+mean force exerted on particles in T by particles outside 7. (2.3) 

The mean momentum of the particles per unit volume of the mixture is nmV: so 
the term on the left-hand side is 

where x = x1 and x = x2 are the positions of the end faces of the cylindrical control 
volume. 

Of the four contributions on the right-hand side of (2.3), the first and fourth 
represent transfers of momentum or forces of limited range acting across the surface 
bounding the control volume and are proportional to A (the contribution from the 
transfer across the curved surface of the cylinder being zero from the symmetry 
about the vertical), and the second and third represent forces acting on particles 
throughout the cylinder and are expressed as integrals over the volume 7.  We 
consider each of these four terms in turn. 

(1) The mean flux of particle momentum across a horizontal plane surface of area 



80 G. K .  Batchelor 

A due to particles crossing that surface is Amn(V2 + (v')), so the first term on the 
right-hand side of (2.3) is 

The contribution from fluctuations in the velocity of a particle is analogous to the 
Reynolds stress in the mean momentum equation for turbulent flow of a fluid. These 
velocity fluctuations might arise from variations in the configuration of particles and 
the resulting hydrodynamic interactions, or, in the case of high-Reynolds-number 
flow around a particle, from turbulence in the fluid. (v') is measurable, a t  any rate 
in a homogeneous fluidized bed or sedimenting dispersion, and observations may be 
recorded in the literature although I have not been able to find any that would define 
( v 2 ) / U 2  as a function of 4 numerically. 

(2) The mean total force exerted on the particles with centres instantaneously 
within 7 by gravity, as modified by buoyancy due to the action of gravity on the fluid 
(which strictly speaking is a part of the third contribution to the right-hand side of 
(2 .3)  but it is convenient to transfer it to the second), is 

Amij l: n dx, (2.6) 

where 9" = g(pp--pf)/pp. The expressions for the mean force on the particles due to 
other externally imposed fields penetrating into thc interior of the control volume 
(electrostatic, magnetic, centrifugal) may likewise be constructed. 

(3) One can recognize three physically different types of contribution to the mean 
force exerted on a particle by the fluid. The first and most obvious type of 
contribution is associated with frictional resistance and dissipation of energy in the 
fluid, and if the dispersion is homogenous this is the only Contribution. We introduce 
the function Eh( V ,  #) representing the mean force exerted by the fluid on a particle 
whose mean velocity is V in a homogenous dispersion of concentration $. For the 
purpose of definition of this function the independent variable V may take any value 
(implying different possible values of the externally applied force). We know that 
V = U when gravity drives the motion, so that 

Fh(U, #) = -mg. (2.7) 

I do not think the dissipative contribution a t  a point in a non-uniform dispersion 
where the mean particle velocity is V and the concentration is # will be significantly 
different from Ph( V ,  4) unless the spatial gradients are large, although I cannot 
justify this. (It is reassuring that later we shall be concerned with the behaviour of 
small disturbances to a homogenous fluidized bed.) Thus we assume the dissipative 
contribution may be represented as ph( V ,  #) to a reasonable approximation. 

The other two types of contribution are associated with non-zero values of aV/at, 
a V / a x ,  @/at or aq5lax; one concerns the direct effect of inertia of the fluid (an indirect 
effect of fluid inertia is of course present in the dissipative contribution when the 
particle Reynolds number is not small) and the other a transport effect arising from 
the random fluctuations in the velocity of a particle. I n  the absence of a systematic 
procedure we can have no guarantee that there are not more than two and that no 
important physical process has been overlooked. However, overlooking a con- 
tribution can be remedied later, and so seems preferable to the unwitting inclusion 
of a spurious contribution required by a hypothetical model. 
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Regarding the contribution due to fluid inertia, it is clear that a change in the 
mean velocity of a particle generates momentum of the fluid and is accompanied by 
an ‘acceleration reaction’ on the particle. In  the case of an isolated body moving in 
infinite inviscid fluid this acceleration reaction is known to be equivalent to the 
addition of a virtual mass to the real mass of the body, and the value of the virtual 
mass can be found from irrotational-flow theory to be of the form C,mp,/pp, where 
C, is a constant of order unity. There are two difficulties to be overcome in a 
generalization of this classical theory to the case of acceleration of solid particles 
dispersed in real fluid. The first, which is more fundamental and more severe, is that 
the viscous fluid through which the solid particles are moving cannot realistically be 
supposed to be free from vorticity a t  any Reynolds number. If the acceleration of the 
particles is of large magnitude, the resulting change in the fluid velocity is 
approximately irrotational, and it might be possible to  use the classical theory to 
determine the fluid reaction on a particle during the period of large acceleration. 
However, this would not be of much help to us, because the particle accelerations in 
question here arise from the propagation of a wavy disturbance of small amplitude 
through the dispersion and so are of small magnitude. The second difficulty is that 
multiple hydrodynamic interaction of particles is important a t  the non-small values 
of 4 that are relevant to instability of a fluidized bed. Some progress has been made 
in the generalization of the classical theory to allow for pair interactions, but 
hydrodynamic interactions of more than two particles in irrotational flow are outside 
the present scope of calculations. 

We do not know enough about the fluid flow due to accelerating solid particles to 
be able to represent the acceleration reaction analytically with any confidence. 
However it seems fairly certain that the order of magnitude of the ratio of 
the acceleration reaction to the particle inertia force is pf/pp, which fortunately is 
small for all gas-fluidized beds of solid particles and for some liquid-fluidized beds. 
I propose here to adopt a simple form for the mean fluid force on a particle resulting 
from change of the mean particle velocity V ,  viz. 

where C is a function of 4 with magnitude of order unity. This has the right limiting 
form as #+O,C+C, (when particles are effectively isolated and the fluid motion is 
irrotational outside a wake that is narrow a t  large Reynolds number) and can be 
regarded as a plausible generalization of the case of a dilute dispersion when the fluid 
flow is irrotational, as Biesheuval & van Wijngaarden (1984) have pointed out. More 
relevantly, I believe (2.8) probably represents correctly, in order of magnitude, the 
acceleration reaction on solid particles a t  arbitrary 4. It can thus serve as an 
indicator of the importance of the effects of inertia of the fluid on the force exerted 
on particles. If we find later that the force contribution (2.8) plays a non-negligible 
part in the conditions for instability of a fluidized bed, that will be a signal that the 
errors involved in the use of (2.8) are of some consequence and that there is need for 
further investigation of the effects of fluid inertia. 

A transport process associated with a force exerted on a particle in a non-uniform 
fluidized bed is particle diffusion. The velocity of a particle in a fluidized bed or 
sedimenting dispersion fluctuates randomly owing to the continual change in the 
configuration of neighbouring particles and the resulting hydrodynamic interactions 
(and perhaps owing also to turbulence in the wake of large particles). This random 
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velocity fluctuation gives the particle a statistical tendency to migrate, as in the case 
of a small colloidal particle in Brownian motion, and in the presence of a gradient of 
concentration of particles there will be a net flux of particle number down the 
gradient, 9 say. When the lengthscale of the random walk of the particles is small 
by comparison with the lengthscale on which a$/ax varies, the statistical migration 
constitutes a diffusion process, with the flux of particle number being of the linear 
form -Dan/ax,  where D is the local (hydrodynamic) particle diffusivity in the 
vertical direction. Now this particle flux is equivalent to an additional mean particle 
velocity F/n,  which can be regarded as a consequence of a steady force exerted on 
each particle. Furthermore, if we exclude for the moment the possibility that 
particles sometimes touch, this effective steady force is literally exerted by the fluid. 
I say ‘effective’, because the migration is statistical and the fluid force actually 
fluctuates in time and varies from one particle to another. However, the mean or 
effective force causing the diffusional flux is just what we want for the mean 
momentum equation (2.3). To obtain the mean force from the additional mean 
velocity that it produces, we divide by the bulk mobility of the particles, B say, 
defined as the ratio of the (small additional) mean velocity, relative to zero-volume- 
flux axes, to the (small additional) steady force applied to each particle of a 
homogeneous dispersion.? The bulk mobility B is clearly a function of $. 

There is thus a transport contribution 9 / n B  to the mean force exerted on a 
particle by the fluid, and when the condition for the existence of a particle diffusion 
process is satisfied - as we shall henceforth assume to be so - this can be written as 

Those readers who are not familiar with the association of the diffusion of particles 
with an effective force acting on them may be wondering how this force is manifested 
in reality. The subsequent discussion of the last term in (2.3), where the diffusion 
contribution (2.9) could also logically be included, bears on this question. 

On gathering up the above three contributions to the mean force exerted on a 
particle by the fluid we have for the third term on the right-hand side of (2.3) 

A [:{n&(V,$)-mnS (2.10) 

in which we have made use of (2.2) and written 

(2.11) 

(4) The nature of the fourth and last term on the right-hand side of (2.3) may be 
explained by reference to a hypothetical case in which the particles are electrically 
charged and exert repulsive electrostatic forces on each other. The range of action of 
these electroshtic forces is small by comparison with the dimensions of the 
dispersion, and so the mean resultant force exerted on the particles inside T by those 
outside T is represented by a force per unit area of the surface bounding of the voiume 
r ,  that is, by a stress, -S say, which is a function of the local particle concentration. 

t The words ‘small additional ’ are needed when the relation between mean velocity and applied 
force is nonlinear. 
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Electrostatic interparticle forces are conservative, and in that case one can interpret 
-S as the derivative of the mean potential energy per particle with respect to the 
volume of the mixture per particle. The contribution to the net force exerted on 
particles in our control volume by external particles is then 

(2.12) 

A repulsive force between particles corresponds to a positive value of S (relative to 
zero when the particles are far apart), in which case S plays a dynamical role 
analogous to the pressure in a gas. 

There is also an effective force between particles exerted across the surface of the 
control volume which is associated with particle velocity fluctuations and encounters 
between moving particles. When a particle within the control volume approaches the 
boundary surface i t  may happen that it is also approaching a particle whose centre 
lies outside the control volume and close to the bounding surface. The presence of 
this outside particle is an impediment to the motion of the inside particle, and has 
an effect equivalent to the exertion of a (repulsive) force on the inside particle. In  the 
case of solid particles dispersed in a gas, the particles may make touching collisions, 
in which case the force exerted on the inside particle by the outside particle during 
the small period of contact is determined by the elastic stress a t  the common surface 
of contact of the two particles. When the continuous phase is a liquid, actual contact 
between two particles normally does not occur, owing to the strong resistance of the 
intervening liquid to being squeezed out, but the outside particle is still exerting an 
effective force on the inside particle. Another way of looking a t  this interparticle 
force associated with velocity fluctuations and the exclusion of particle overlap is to 
say that i t  is the mean normal stress that  must be exerted a t  the boundary of a 
homogeneous region containing many particles to prevent them from being dispersed 
by their velocity fluctuations. (It is helpful to regard the boundary as moving with 
the mean speed of the particles.) 

There is a concept in statistical mechanics, viz. the chemical potential, which has 
some relevance here. The chemical potential of small particles in Brownian motion 
in stationary fluid is a measure of the free energy associated with their concentration, 
and two dispersions in separate containers put side by side will be in thermodynamic 
equilibrium (meaning that the separating wall could be removed without causing any 
change) only if the chemical energy per particle (p, say), as well as the temperature 
and fluid pressure, is the same on the two sides. Furthermore, if a gradient of 
chemical potential is set up in a tube connecting the two containers, perhaps as a 
result of the concentrations in the two containers being different, the diffusive flux 
of number of particles down the gradient (relative to zero-volume-flux axes) is the 
same as if each particle is acted on by a steady force equal to - ( l -$)- 'Vp 
(Batchelor 1976). Thus the contribution to the stress function S that would be made 
by small Brownian non-sedimenting particles is given by 

(2.13) 

where D ( 4 )  is the (Brownian) diffusivity of the particles and B($)  is the bulk mobility 
defined as before. An expression for p in terms of the interparticle force law is 
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available, and in particular ,u can be calculated as a function of $ for particles that 
exert an actual force on each other only when they are touching and are resisting an 
attempt to make them overlap. 

The relation (2.13) is exact for very small particles whose velocity fluctuations are 
due to their share of the thermal energy of the system. As already mentioned, the 
larger sedimenting particles with which we are concerned likewise exhibit random 
velocity fluctuations, due to the continual change in the configuration of particles 
and the resulting hydrodynamic interactions. There is no precise definition of the 
chemical potential in the non-Brownian system, but all the other quantities in (2.13) 
have definite mechanical meanings (D being now the hydrodynamic diffusivity) and 
the equality of the first and last members holds provided the concentration gradient 
is constant over a sufficiently large range of values of x for the relation between flux 
of particles and concentration gradient to be linear. This equality simply says that 
the addition to the mean velocity of the particles associated with diffusion down a 
concentration gradient is a consequence of the non-uniformity of an effective 
repulsive force between particles represented by the stress function S. Thus we have 
recovered the transport contribution (2.9) from a different starting point. 

It appears then that the contribution to the momentum equation due to particle 
diffusion cannot be said unequivocally to fall in either the third or the fourth term 
on the right-hand side of (2.3). If particles never touch, the force in question is 
literally exerted by fluid stresses a t  the surface of a particle, but the origin of the 
force lies in the presence and motion of other particles and i t  corresponds more to 
the physical reality to say that the force is exerted by other particles. However, the 
proper classification of the force is a secondary matter, because the equality of the 
first and last members of (2.13) holds in all circumstances. 

Finally, we note that the particle stress -S may be non-zero when the mean 
particle velocity is non-uniform, even in the absence of fluctuations in particlc 
velocity. When the mean rate of strain aV/ax is negative particles are coming closer 
together, and the viscous fluid resists being squeezed from between particles. This 
resistance is equivalent to the exertion of a repulsive force between particles (and 
actually is such a force when two particles touch). Provided inertia forces are 
negligible in the small gaps between particles and the mean velocity gradient is 
uniform over distances of a few particle diameters, the particle stress will be linear 
in aV/ax and vanishes with $, in which case the contribution to S may be 
written as 

av  
4Pf r’, . (2.14) 

The parameter $pf 7’ here is a positive function of 4 with the dimensions of viscosity, 
and represents a resistance to deformation of the configuration of particles which is 
likely to be important when particles are very close, as for example in a slowly 
contracting layer of small particles that have fallen through liquid to the bottom of 
a container. 

The two contributions to the mean total force on particles within the control 
volume exerted by particles outside the control volume that have been identified 
here are first that due to particle diffusion, represented by (2.13), and second that due 
to  resistance to configurational deformation, represented by (2.14). The former has 
already been included in (2.10), so that the fourth term on the right-hand side of (2.3) 
consists of (2.12) with the expression (2.14) for 8. 

On inserting in (2 .3 )  the analytical cxpressions (2.4), ( 2 . 5 ) ,  (2.6), (2.10) and (2.12) 
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with (2.14), and using the fact that the momentum balance holds for all choices of 
x1 and x2, we obtain a differential equation which becomes 

when use is made of (2.7) and the particle-conservation equation (2.2). The form 
of the acceleration-reaction term is a provisional guess, but otherwise no strong 
approximation or assumption or restriction has been made in obtaining the two 
conservation equations (2.2) and (2.15) for one-dimensional mean motion, and all 
quantities in these equations have clear physical meanings. If enough information 
about the various parameters in (2.15) is available, these two equations are sufficient 
in principle for the determination of V and (b as functions of x and t .  Note that there 
is no need, in this problem of one-dimensional mean motion of incompressible phases, 
to consider the mean momentum balance for the fluid because the mean fluid velocity 
is determined by V and qh. As we shall see, not all the parameters in (2.15) have a 
significant influence on the stability of a uniform fluidized bed. One parameter that 
does prove to be important is the particle diffusivity D.  The presence of this 
measurable parameter in the equation of mean motion of the particles is the main 
novel feature of the present theory. 

3. The form of the equations for small departures from uniformity 
In  preparation for the analysis of the stability of a homogeneous fluidized bed to 

small disturbances, we consider now the approximate form taken by the momentum 
equation (2.15) when the departures from homogeneity are small and the spatial 
gradients a+/ax and aV/ax are small in some sense. This requires separate 
consideration of the quantities F, and <uz) on the right-hand side of (2.15). No 
further consideration of the form of other terms in (2.15) is needed, but we note that 
the implicit assumption underlying some of them - that  the statistical properties of 
the particle configuration other than 4 are approximately constant - becomes more 
accurate as the departures from homogeneity decrease. 

The mean force exerted by the fluid on a particle with mean speed V in a 
homogeneous bed of concentration q5 may be written as 

Fh(V) = -+naZp, VJVIC,, 13.1) 

where a is the volume-equivalent radius of the particle, and the drag coefficient C, 
depends on the flow Reynolds number 

as well as on $I and possibly on the density ratio p p / p f .  The statistical configuration 
of the particles is also relevant but is not an independent variable in a homogeneous 
dispersion of particles. I n  the case of fine particles for which R + 1 the flow is 
dominated by viscous forces and C, cc R-', whereas when R % 1 the effects of fluid 
inertia are dominant (for solid particles) over most of the flow field. Since a t  this stage 
we are unsure about the particle size that may be critical for instability, i t  is desirable 
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to impose no restrictions on the value of R. However we can make use of the fact that 
G, varies slowly with R, and that the number 

varies slowly, between 1 when R < 1 and a maximum of 2 when R $ 1 .  Since y is 
approximately constant over a small range of mean particle speeds, we may regard 
it as being evaluated a t  the particular value V = U .  It is believed (Wallis 1969) that 
the expression (3.3) also does not vary much with $, so the value of y can presumably 
be estimated from the known dependence of the drag coefficient on Reynolds number 
for an isolated particle. 

Now in a perturbed fluidized bed the particle volume fraction $ and mean particle 
velocity V vary slightly with x and t ,  and V differs slightly from the gravitational 
velocity U appropriate to the local value of $. If we again make the reasonable 
assumption that the statistical configuration of particles does not vary significantly 
in the disturbed fluidized bed, it follows that the first approximation to the 
fluctuation in the local dissipative fluid force term in (2.15) is given by 

The mean-square velocity fluctuation in a homogeneous fluidized bed is a function 
of the particle volume fraction $, and no doubt also of the flow Reynolds number and 
the density ratio pp/pf, which we write as 

(3.5) 

There are no velocity fluctuations in the absence of hydrodynamic interactions 
between particles, so H + 0 as $ + 0. At the other extreme, when $ approaches the 
close-packing limit, (v‘)>, must again approach zero, whereas although U 2  becomes 
small it remains non-zero in the limit. It seems therefore that H ( $ )  has a maximum 
a t  some intermediate value of $. 

Now in the presence of small gradients of mean particle speed and number density 
the value of ( v z )  will differ from (3.5) as a consequence of the bias in the velocities 
of the particles arriving a t  station x from the two different directions, just as the 
value of the mean-square velocity of molecules of a gas is changed slightly by the 
existence of a gradient of mean molecular velocity. For a small departure from 
the homogeneous state we may appeal to phenomenological arguments and write 

av a$ (v ’ )  = H ( $ )  u2-~”($”-~”’($) u--, ax ax 
where the coefficients 7” and 7“‘ have the dimensions of a diffusivity and are 
parameters of the homogeneous state depending primarily on $ and secondarily on 
R and pp/pr .  A positive gradient of V should cause a decrease in the value of ( v 2 )  for 
the same reasons as in the kinetic theory of gases, and as defined in (3.6) 7” should 
therefore be positive. 7“ represents the diffusion of particle momentum, and mnf is 
a kind of viscosity. The significance of 7“’ is less evident. Arguments like those used 
in kinetic theory of gases suggest that 17“’l 4 7”. Both gradient terms in (3.6) play 
the secondary role of damping disturbances with small lengthscale in the later 
considerations of stability of a fluidized bed. We shall therefore drop the term 
containing 7’” in the absence of evidence to suggest, it should be retained. 
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involving resistance to a rate of deformation of the configuration of particles, viz. 

87 

It will be observed that we now have two terms on the right-hand side of (2.15) 

(3.7) 

which can conveniently be lumped together by putting 

P p  71”+ Pf 71’ = Pp 71. (3.8) 

The new parameter $ p p 7  may be termed the particle viscosity and represents the 
sum of two different effects, one being the diffusion of particle momentum by the 
random fluctuations in particle velocity and the other resistance to change of 
the particle spacing due to viscous stresses in the fluid. 

With regard to the other terms in (2.15), we need only note that the bulk mobility 
B introduced in (2.9) is defined as -{8Fh(V)/aV};Lu and so may be written with the 
aid of (3.3) as 

(3.9) 
B=---- u - U ( $ )  

YFh(’) rm9”’ 
y is effectively a constant for a perturbed bed, so B is a known function of $. 

The form of the momentum equation (2.15) that  is appropriate to a perturbed 
fluidized bed in which spatial gradients are small is now found by substituting (3.4), 
(3.6) (with 7”’ = 0 ) ,  (3.8) and (3.9) in the terms on the right-hand side. Thus 

ax 
(3.10) 

It is of interest a t  this point to notice the correspondence between (3.10) and the 
mean momentum equation for a flowing gas of density mn (or $pp) composed of 
discrete molecules. Aside from the fluid drag-weight term (3.4) and the acceleration- 
reaction terms, to which there are no counterparts in the gas-flow equation since the 
molecules move in a vacuum, the two equations are formally identical, as might have 
been expected. The quantity -mn(v2) in (2.15), supplemented by (3.6), corresponds 
to the mean normal stress in an ideal gas of molecules of negligible volume which 
exert no force on each other except when in collision ; part of this normal stress (viz. 
$ p p  H U 2 )  is a ‘pressure ’ dependent on the local density and part (p, $q”aV/ax) is a 
‘deviatoric stress’ proportional to the local mean rate of strain. The quantity-# 
introduced in (2.12) represents an additional stress due to  particle interactions, and 
likewise contains both a pressure part (involving D )  and a deviatoric part (involving 
7’). The effects of particle interactions are normally small for a flowing gas (in which 
case they are called ‘real gas’ effects) but may be expected to  play a more important 
role in two-phase flow in view of the strength of the hydrodynamic interactions 
between adjacent moving particles. The total coefficient of -a$/ax on the right- 
hand side of (3.10), viz. 

(3.11) 

is a parameter of a homogeneous fluidized bed which is primarily a function of $, and 
$ p p Q  may be interpreted as a bulk modulus of elasticity of the configuration of 
particles. 

It could be said that the derivation of (3.10) given here justifies an assumption that 
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the particle phase in a fluidized bed behaves like a gas occupying the whole space, 
with the addition of terms representing the force exerted on the particles in unit 
volume by the second phase. However, the advantages in deriving the particle 
momentum equation in the above manner instead of simply postulating a momentum 
equation of the general form appropriate to a gas in motion are first that we know 
precisely how general must be the assumed form of the momentum equation for the 
gas (for instance, would one have known that ‘real gas’ effects should be allowed 
for?) and second that each term of (3.10) can be interpreted in terms of mechanical 
processes involving the actual particles. 

We now suppose that a homogeneous fluidized bed characterized by the particle 
volume fraction 

# = v = u,+ V‘, (3.12) 

where the suffix 1, here and in the two later equations, denotes the value of a function 
of + a t  + = +l .  All terms of the two governing equations (2.2) and (3.10) vanish in the 
case of the homogeneous bed, and the equations for the small perturbation quantities 
+’ and V’, correct to first order, are as follows: 

is disturbed and that in the disturbed state 

a+! a+/ av’ -+u,-++,-- = 0: 
at ax ax (3.13) 

ax 
a z v ’  

= 

in which we have written 

(3.15) 

Since all quantities in (3.13) and (3.14) other than x and t and the disturbance 
magnitudes +’ and V’ are parameters of the undisturbed homogeneous fluidized fluid, 
the suffix 1 is redundant and will be dropped. 

We get some insight into the relative magnitudes of the different terms in (3.14) 
by making the variables non-dimensional. Suppose that a disturbance with 
lengthscale A is imposed on the bed. It is likely that velocities will scale with U and 
times with A / U .  We therefore put 

and rewrite (3.14) as 

All terms in (3.16) other than that multiplied by y@A/Uz (and the normally 
negligible part of the particle viscosity coming from +pp 7’) represent inertial effects 
of different kinds. It follows that, as 

u”Yls”lA + 0 
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and all other non-dimensional parameters in (3.16) remain unchanged, inertial effects 
become relatively small and that (on reverting to  dimensional variables) 

$V‘ x -$’W-D-, a$’ 
ax 

whence 4‘ is seen from (3.13) to be given by 

y + ( U + W ) - =  a$/ D- az$f 

at ax a x 2  . 

(3.17) 

(3.18) 

This is the familiar kinematic-wave equation for $‘ in a sedimenting dispersion with 
very small gradients (Kynch 1952) supplemented by a new diffusion or damping 
term, and there is a solution representing a sinusoidal wave of wavelength h 
propagating with velocity W relative to the particles and with amplitude 
proportional to exp ( -  4z2Dt /h2) .  

It is interesting to note that the diffusion term has its familiar place in (3.18), and 
it might be supposed that a diffusion term should have been included on the right- 
hand side of the particle-conservation equation from the beginning. I think that 
would have been a mistake in the context of consideration of effects of particle 
inertia. All contributions to  the mean flux of particles, including that from diffusion 
down a concentration gradient, are contributions also to the mean particle 
momentum, and so the mean velocity that is the dependent variable in the 
momentum balance equation should include the contribution from diffusion ; 
diffusion is then incorporated in the particle flux term in the conservation equation 
(2.2). Actually the consequences of including the diffusion term explicitly in the 
particle-conservation equation instead of in the momentum equation are not of 
major importance for the problem of stability, and in particular the criterion for 
growth of a disturbance to be given later is unaffected in the absence of 
acceleration-reaction effects. 

When on the other hand 
U2/Ylg”lh + 

and all other non-dimensional parameters remain unchanged, the non-inertial terms 
in (3.16) become negligible and we have 

(3.19) 

Equations (3.13) and (3.19) are identical, aside from the extra term involving 5 in 
(3.19), with those describing small disturbances to the density and velocity of a 
compressible viscous gas in uniform motion with velocity U .  By eliminating 4’ from 
(3.13) and (3.19) it may be seen that a sinusoidal disturbance propagates vertically 
with no change of form other than a slow decrease in amplitude due wholly to  the 
particle viscosity. The two possible wave velocities are rather complicated functions 
of U ,  $, K ,  8 , 5  and 7, but if the minor influence of the particle viscosity on these wave 
velocities is ignored they become 

(3.20) 

provided of course that the quantity within curly brackets is positive. These 
dynamic waves involving inertia forces and effective elasticity of the particle 
configuration may propagate with the same speed, relative to axes moving with 
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velocity U{ 1 -ic( 1 + O)-l}, in either of the two directions and are mechanically similar 
to compression waves in a gas, although the random velocity fluctuations that 
provide the resistance to  compression are of thermal origin in the case of the gas 
molecules. 

Regarding the sign of the square-rooted expression in (3.20), there is no doubt that 
K (defined in (3.15)) is positive a t  small values of $ but may be negative at  some 
large values of $, as we shall see. A negative value of this expression would imply 
exponential growth of a non-propagating disturbance and the spontaneous formation 
of regions of high concentration of particles. We need more data on (v2) as a function 
of $ for a homogeneous fluidized bed before we can make predictions about this kind 
of instability at large values of U2/yJg"l A. 

The intermediate regime in which inertia forces and variations of the fluid drag 
force are both significant is evidently a bridge between a regime in which damped 
kinematic waves may propagate and one in which damped dynamic waves may 
propagate. If unstable wavy disturbances exist in a fluidized bed, they presumably 
occur in this intermediate regime which we now examine. 

4. The behaviour of sinusoidal disturbances to a homogeneous fluidized 
bed 

An initial small disturbance to a homogeneous fluidized bed may be resolved into 
Fourier components which evolve independently. We therefore consider a dis- 
turbance that varies sinusoidally with respect to x with wavenumber K (  = 27t/A). The 
governing equations (3.13) and (3.14) are linear and homogeneous with constant 
coefficients, so an exponential dependence on t may be anticipated. We put 

I (4.1) $' = A e i K ( s - c t ) ,  J," = B e i K ( Z - C t )  

where A and B are constants and K is real but c may be complex. Substitution in 
(3.13) and (3.14) (and suppression of the suffix 1 )  gives 

A ( U - c ) + B $  = 0, (4.2) 

Ys" B$( 1 + 8 )  (U - c )  - B$cU = - AK + i B $ q  + - (iB$ - iA W -A&). (4.3) 
K U  

The condition for the existence of a non-zero solution of (4.2) and (4.3) for A and B is 

( 1 + O ) ( c - U ) 2 + ( e - U )  = 0. 

Before solving this quadratic equation for c it pays to rewrite i t  as 

- - iygw 
(c-0)2+iF(c-U)-Q--  = 0, 

K U  

where the following substitutions have been made : 

(4.4) 
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Note that in the absence of acceleration-reaction effects (i.e. when 9 = 6 = 0), the 
quantities denoted by Q, 0 and I? reduce to Q (see (3.11)), U and W .  The solution 
of (4.4) for c is 

(4.6) K U  

Since the real and imaginary parts of the complex number (a+ ib);, where a and b are 
real, are 

{$ + $(a2 + b');}; and { - $ + +(a2 + b2);}i 

respectively, we ser irom (4.6) that the real and imaginary parts of c are 

(4.7) 

The condition for disturbances with exponentially growing amplitude to exist, 
that is, for ci > 0, becomes evident when the inner square-rooted quantity in (4.8) is 
rewritten as 

it is (YgW)' > K2u2F2Q (4.9) 

If Q < 0 this condition is always satisfied, as one would expect for particles with a 
negative bulk modulus of elasticity (Q < 0 being a necessary condition for Q < 0). 
However, the estimates of K and D to be given in the next section suggest that the 
more realistic and interesting case is Q > 0, and the condition (4.9) is then equivalent 
to 

(4.10) 

A connection may now be made with the results obtained in the preceding section 
for small and large values of Uz/ylgl h. The non-dimensionalizing length h was not 
specified in $3, but we can identify it here with the disturbance wavelength 2.n/~.  
There is actually another length occurring implicitly in equation (3.10), viz. the 
particle dimension a, which is expected to be the length factor relevant to the two 
'diffusivities' D and 7. It was required there that the order of magnitude of 
dimensionless quantities such as K a  should not change during the two limiting op- 
erations that led to (3.17) and (3.19). If now we put ~ U ~ / y l g " l  4 1 and U2/ylQla 4 I 
in (4.10), the terms proportional to y@1 in the expressions for F ,  6 and W are 
dominant and the condition (4.10) for growing waves to exist is not satisfied. One of 
the two solutions in (4.7) and (4.8) then represents a wave propagating with velocity 
U + W (the kinematic-wave velocity) and amplitude diminishing as exp ( - K2Dt)  ; the 
other and less familiar solution retains some influence of inertia forces and represents 
a strongly damped wave propagating with velocity U - W - <( 1 +8)-l U .  If on the 
other hand ~U~/lylgl  $- 1, N can be seen to be smaller than unity provided Q > 0, and 
the two solutions in (4.7) and (4.8) then represent two dynamic waves propagating 
with the velocities (3.20) and damping due to the particle viscosity, as found 
previously. We shall see however that N does exceed unity for certain small values 
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of K U 2 / y l @  and order-one values of U2/ylg"la, a possibility that was not evident 
from the previous discussion of the two limiting cases and that shows instability 
when inertial effects are neither negligible nor dominant. 

The dimensionless parameter N depends on the wavenumber of the disturbance 
and has a maximum value, N ,  say, at K = K,. The value of K, depends in general on 
the numerical values of W, 8 and c, estimates of which will be made in the next 
section. Meanwhile we note that by inspection K, = 0 in the simple case in which 

(1+8) W + g y  < 0, (4.11) 

which is always satisfied when acceleration-reaction effects are negligible (since 
W = q5dU/dq5 < 0) and which we shall see in $5 is effectively always satisfied when 
the particles are solid. The disturbances of greatest relevance to stability questions 
are thus those of long wavelength ; and for these the assumption of small gradients 
made in $3 is certainly valid. The condition that there should be some (small) values 
of K for which ci > 0 is 

when (4.11) is satisfied. 

( ( 1  +O) w+$cu>2 > N ,  = 
( 1 + 8 ) Q + g U 2  

(4.12) 

It will be' recalled that W = q5 dU/dq5 is the velocity of propagation, relative to the 
particles, of the kinematic concentration waves that, exist when U2/ylg"l a 3 1, and 
that Q, in the denominator of the fraction in (4.12), is the effective bulk modulus 
of elasticity of the particle configuration divided by the particle mass per unit 
volume of the mixture. Thus W and Qi are the speeds of propagation, relative to the 
particles, of two different kinds of non-dispersive wave of small amplitude which may 
exist separately under certain conditions. I n  the absence of acceleration-reaction 
effects (as in the case of a gas-fluidized bed), when N ,  reduces to W2/Q, the condition 
for growth of the amplitude of a disturbance at some wavenumbers is thus that the 
kinematic wave speed should exceed the dynamic wave speed. This strikingly simple 
criterion for instability is similar to that derived by Wallis (1962, 1969 ss6.5, 8.8) 
from general one-dimensional dynamical equations for a continuous medium that 
possesses a bulk elasticity modulus and that is acted on by a body force dependent 
on both the local velocity and the local density (in other words, a medium for which 
the momentum equation for a small disturbance to a uniform state contains on the 
right-hand side, like (3.14), terms proportional to a@'/az, V' and 4'). Note however 
that in two-phase flow with acceleration-reaction effects Wallis's criterion for 
instability needs modification and that the criterion is of value only insofar as we 
know what physical processes are represented by Q .  

When N ,  > 1 the range of wavenumbers for which ci > 0 is 0 < K < K,, where K, 

is the neutrally stable wavenumber for which N (as given by (4.10)) equals unity. 
After some manipulation we find 

(4.13) 

where N ,  is given by (4.12). It is probable that the wavenumber a t  which the growth 
rate  KC^ has its maximum (when N ,  > 1) differs from K, by a factor of order unity 
only, a t  any rate for values of N ,  not far above unity. 

We may investigate the values of c, and ci in the neighbourhood of the critical 
condition N = 1 by writing the inner square-rooted quantity in (4.7) and (4.8) as 
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N ,  > 1 

K * 

N ,  > 1 

K * 

FIGURE 1. Sketch showing the nature of the dependence of ci on K near the  origin when IN- 11 < 1. 
N ,  is the maximum value of N with respect t o  K and occurs at K = K, = 0. 

and expanding in powers of the small quantity N - 1.  The relations (4.7) and (4.8) 
(with the choice of root corresponding to the positive sign in (4.6)) reduce to 

(4.14) 

when IN-11 < 1. From (4.14) we see that the propagation velocity of the neutral 
disturbance, relative to the particles, is 

(4.15) 

which is the common velocity of a kinematic concentration wave and the upwardly 
propagating dynamic wave when 8 = 6 = 0. We also obtain the growth rate  KC^ for 
nearly neutral disturbances as a function of K and q5 and the parameters specifying 
the properties of the particles. The general nature of the dependence of ci on K is 
evident from (4.14) and the separate dependences of I' and N on K given by (4.5) and 
(4.10) respectively, and is sketched in figure 1. Near the origin the curves in figure 1 
have the linear form 

(4.16) 

5. The conditions for instability of a fluidized bed in numerical form 
The foregoing analysis of the behaviour of plane-wave disturbances has revealed 

the physical processes promoting or opposing instability of the bed and has 
determined the conditions under which disturbances grow. There arises now the 
question whether the conditions found to be necessary for instability are realized in 
practice. This requires the conditions for instability to be put into numerical form. 
The conditions have been expressed in $4 in terms of various parameters of a 
homogeneous fluidized bed and we therefore proceed to make the best possible 
estimates of the numerical values of these parameters using either theoretical 
reasoning or observational data. Some of the estimates are rather crude and 

4-2 
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provisional because both theory and observational data are lacking a t  the present 
time. 

We suppose now that the particles are solid spheres, of radius a. For particles of 
this kind there is evidence of the instability of both gas- and liquid-fluidized beds. 

The most important of the parameters to be estimated is the mean particle 
velocity U in a homogeneous fluidized bed. For particles that exert only 
hydrodynamic forces on each other and are large enough for effects of Brownian 
motion to be negligible (a > 1 pm), U / U ,  is a function of $ and of the flow Reynolds 
number, where U ,  is the velocity of an isolated particle in fluid a t  rest a t  infinity. 
Many measurements of this function have been made, and a widely used correlation 
of the data for solid particles is that  associated with the names Richardson & Zaki, 
viz . 

(5.1) U ( $ )  = Un(1- 

where the power p varies monotonically with the Reynolds number R, ( = 2aIU,,I p,/p) 
of the flow about an isolated particle, from about 5 a t  very small Reynolds 
number to about 2.5 a t  very large Reynolds number. A set of careful measurements 
of the mean fall velocity of sedimenting spheres in the small-Reynolds-number range 
which defines U ( $ ) / U ,  empirically over the whole range of values of q5 was made by 
Buscall et al. (1982) and is reproduced in figure 2. These measurements are represented 
well by the algebraic form (5.1) with p = 5.5,  and we shall adopt this value for the 
case of small Reynolds numbers. The velocity U ,  depends on the particle radius and 
density, in a way which is determined by the Reynolds number. At small particle 
Reynolds number the Stokes-drag relation 

(5.2) 

may be used, where ,u is the fluid viscosity ; otherwise an empirical relation between 
U ,  and a and pp is needed. 

If U ( $ )  has the form (5.1) then for W ( $ )  we have 

(5.3) 

which is negative everywhere and has a maximum magnitude a t  $ = p-l .  
Another function of $ which occurs in the stability parameter N is H U 2 ,  

representing the mean-square particle velocity fluctuation in a homogeneous bed. 
This is almost completely unknown. One might make the simple assumption that the 
dimensionless function H ( $ )  varies quadratically between zero at  $ --f 0, when a 
particle is effectively isolated, and zero again a t  close packing ($ = $cp) ,  when a 
particle is 'locked' into a falling cage of particles. The maximum value of H might 
be as large as 0.25, a t  which value the r.m.s. velocity fluctuation is 50% of the mean. 
On this rough tentative basis 

The corresponding form of the function K is 
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FIGURE 2 .  Measurements of the mean vertical velocity of polystyrene spheres of diameter 3.10 Frn 
in water. made by Buscall et al. (1982). The continuous curve is the function (1-q5)5.5. and the 
broken line is a theoretical result (Batchelor 1972) for 4 B 1 and uniform pair probability 
density. 

Two significant features of this expression, for the small-Reynolds-number value of 
p ,  are first that it is positive (corresponding to a positive contribution to the bulk 
modulus of elasticity of the particles) only when $ is less than about 0.14, and second 
that the magnitude of K / U i  is everywhere small and less than 0.025 for $ > 0.1. 
These features are mainly a consequence of the dominance of the factor U 2  in the 
expression for ( v ' ) ~ .  

The other contribution to the function Q defined in (3.11) (that is, to ($pJ1 times 
the bulk modulus of elasticity) is yg"D/U, where D is the hydrodynamic gradient 
diffusivity of the particles. The concept of hydrodynamic diffusion of particles in a 
sedimenting dispersion is still novel, and there is a dearth of both theoretical 
calculations and observations of the value of D. It seems likely that the relevant 
velocity and length scales of the random motion of a particle are IUI and a 
respectively, except perhaps near $ = 0 and # = $cp, in which event we may write 
D as the product of alUl and a dimensionless function of $ and the particle Reynolds 
number and the density ratio. There is little we can say about this function on 
theoretical grounds. We shall assume simply that 

D = olalUl = aalU,,I ( 1  - $ ) p ,  (5.6) 
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where a is a number of order unity, and suppose that a is constant for lack of 
information to the contrary. With regard to the numerical magnitude of a, a very 
recent experimental investigation of the diffusive spreading of the top of a cloud of 
sedimenting particles (at  small Reynolds number) by Davis & Hassan (1988) 
suggests values of D/aO decreasing from about 12 to 8 as the volume fraction below 
the interface increases from 0.05 to 0.15, where 0 is the median value of U in the 
interface. The experiment gives a kind of weighted average diffusivity for all the 
values of # present in the spreading interface and so does not specify a function D(#), 
but is otherwise helpful in indicating the general magnitude of a for small values 
of #. Unfortunately the values of a needed for the determination of the onset of 
instability of a fluidized bed that is being expanded are those for higher 
concentrations. 

The diffusivity D appears in the expressions for Q and N ,  in combination with 
yg"/U, and in place of (3.11) we may write 

since the sign of U is the same as that of J (both being positive in the case of particles 
that  move downward relative to the fluid). 

Another coefficient with the dimensions of diffusivity occurring in the stability 
parameter N is 7,  #pp7 being the particle viscosity. No theory or experimental data 
about 7 are available, and the best we can do is to conjecture that a and IU) are the 
relevant length and velocity scales and that 

7 = PalUl9 (5 .8)  
where p is a number of order unity which may vary with #. The particle viscosity 
causes damping of disturbances with large wavenumber and so determines the 
maximum wavenumber at  which growth occurs a t  a given value of N ,  and also 
the wavenumber for which the growth rate is a maximum, but i t  plays no part in 
the condition for growth to occur a t  some wavenumbers and so is less important 
than D. 

Finally there are the two acceleration-reaction coefficients 0 and c, both of which 
are determined by the function C ( # )  as indicated in (2.11). It is not known whether 
the expression (2.8) represents the acceleration reaction correctly, although we hope 
that i t  gives fluid-inertia effects of the right order of magnitude. The magnitude of 
thc function C(#) is expected to be of order unity at all values of #, and that is the 
most we are entitled to  assume, but since it is clearer to work with definite functions 
than with one specified only in order of magnitude a definite choice of C ( # )  will be 
made. We shall choose an expression for C(#) which Zuber (1964) suggested would 
represent approximately the virtual mass of a particle in a homogeneous dispersion 
in which the fluid motion is irrotational (which, as noted in $2, is unlikely to be a 
realistic assumption for a dispersion of solid particles). Zuber postulated that each 
particle may be supposed to move with velocity V in fluid enclosed by a stationary 
boundary representing the hydrodynamic effect of all the other particles. He took the 
outer boundary to be a sphere of radius b instantaneously concentric with the moving 
spherical particle, and an easy calculation of the kinetic energy of the fluid in 
irrotational flow then shows that 

if b is chosen as a/#; to give the right ratio of solid to fluid volume. 
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We shall use (5.9) as a basis for judging the relative importance of fluid-inertia 
effects on the stability parameters. With this expression for C we have from 
(2.11) 

(5.10) 

Inspection of the expression for N in (4.10) shows that we need to know first whether 
1 + 6 differs significantly from 1.  The acceleration reaction is always negligible when 
the fluidizing fluid is a gas, but for a liquid pf/pp typically lies between 0.1 and 0.5 
and since according to (5.10) 6 rises monotonically to 2pf/pp a t  the large particle 
concentration $ = 0.5, it is clear that 6 is not always small compared with unity. 5 
is also a monotonically increasing function of q5, and is equal to 1.5p,/pp at  q5 = 0.5. 
In 94 we saw that the wavenumber K, a t  which N has its maximum value is zero 
when the condition (4.11) is satisfied, and since according to (5.3) and (5.10) 

(5.11) 

it appears that  (4.11) is always satisfied when pp > pf. Henceforth we shall accept 
K, = 0 without qualification, with the consequence that the condition for growth a t  
some (small) values of K is N ,  > 1 where N ,  is given by (4.12). 

With the help of (5.3), (5.4), (5.7) and (5.10) we may now write the expression 
(4.12) for N ,  as 

(5.12) 

which is not as opaque as it might seem since the dependence on q5 of each term in 
the numerator and denominator is fairly simple. N ,  can be regarded as a function of 
three dimensionless variables, the particle concentration q5 representing the operating 
conditions of the fluidized bed, the Froude number 

(5.13) 

representing the particle properties, and the density ratio pJpf which determines the 
magnitude of fluid-inertia effects (and also the numerical value of Uo) .  As we have 
expected from the discussion in 93, 5 is the key quantity determining whether a 
uniform fluidized bed is unstable under some operating conditions. 

Further consideration of the conditions for instability in numerical form is best 
given to  the two cases of gas- and liquid-fluidized beds separately. 

The case of a gas-jluidized bed 

The parameters 8 and g are negligibly small in this case, and the expression (5.12) 
reduces to 

(5.14) 
\ ,  - 

U i  dq5 ’+z 
Trial calculations show quickly that values of N ,  near unity correspond to values 
of 6 and of a such that the Reynolds number of the flow about a particle is small. Let 
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us therefore assume small-Reynolds-number flow provisionally. In  that event the 
power p in the empirical expression (5.1) for U(q5) can be chosen as 5.5 on the basis 
of the observations shown in figure 2 .  Also, we can put, y = 1. The numerator in (5.14) 
then has a maximum value of 0.164 a t  q5 = q5, = p-' = 0.182. Hence values of the 
denominator of (5.14) near 0.16 are needed for N ,  to  be near the critical value unity. 
Now according to the estimate of the function H given in (5.4) and used in (5.5) (an 
estimate that needs to be checked by observation of the mean-square fluctuation in 
particle velocity), the magnitude of the first term in the denominator of (5.14) is 
smaller than 0.025 a t  all values of q5 above 0.1. It appears that  the second term in 
the denominator of (5.14) is appreciably larger than the first a t  conditions near 
critical. The condition for instability of a gas-fluidized bed may thus be written to a 
fair approximation as 

(5.15) 
aga a 

It is worthwhile to note in passing the implication of this tentative conclusion, 
viz. that the contribution to  the function Q in ( 5 . 7 )  (or to the bulk modulus of 
elasticity of the particles) due to the effective force exerted hydrodynamically 
between particles on the two sides of a horizontal plane surface is positive and larger 
in magnitude than that due to transport of particle momentum across the surface. 
The effective repulsive force between particles, which is related to the particle 
diffusivity, evidently provides the primary opposition to  growth of a disturbance to 
the particle concentration in the bed. The particle diffusivity, which does not appear 
in any of the governing equations used in previous analyses of the stability of a 
fluidized bed, is seen to  be a key quantity. 

As noted previously, we are regarding the diffusivity coefficient a! as not varying 
appreciably with q5, for lack of information to the contrary, in which case the 
expression for N, in (5.15) has a maximum with respect to $ a t  q5 = q5, = 0.182 
and c c 

W 2  5 A', % - = 30.25@( 1 - 4)9 - > 1. 

(5.16) 

The condition for growth of disturbances a t  some values of q5 is thus that t exceeds 
a critical value &, where 5, = 6 .09~ .  A criterion such that U:/ag should exceed a 
number of order unity? was to have been expected on dimensional grounds, since 
U,, a and g are the primary relevant parameters of the problem and U,Z represents 
the particle inertia forces which must exceed a certain magnitude for instability. 

Values of N L  as a function of (4 (according to (5.15)) are shown in figure 3 for 
various values of </a!, and we may imagine each one of these curves as giving the 
values of N ,  a t  the different stages of expansion of a fluidized bed. When the fluid 
speed is just large enough to fluidize the bed, q5 is close to its maximum value and 
N ,  < 1 for all the curves shown in figure 3: As the fluid speed is increased the bed 
expands and q5 decreases. If < 5, the value of N ,  increases to a maximum which is 
less than unity before decreasing to zero, and the bed is stable for all speeds of the 
fluidizing fluid. On the other hand, if 

(5.17) 

the value of N ,  reaches the critical value unity a t  a certain value of q5, and then 

t A criterion for bubbling of a fluidized bed of this form has been put forward on empirical 
grounds by several authors, beginning with Wilhelm t Kwauk (1948). 
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FIGURE 3. The stability parameter N ,  as a function of q5 for various values of the particle Froude 
number 5 in the case of a gas-fluidized bed (for which the particle Reynolds number is small). If 
the fluid is air a t  normal temperature and pressure and p, = 1 gm/cm3, the values of 5 correspond 
to values of the particle radius a shown in parenthesis on the curves. The diffusivity coefficient CL 
is expected to be of order unity. 

exceeds it, showing that the bed becomes unstable when it is been expanded 
sufficiently. The bed becomes stable again a t  even higher fluidizing speeds and small 
values of 4, and it is evident from the $-dependence of the numerator of the general 
expression for N ,  in (5.12) that this holds for fluidized beds at  any particle Reynolds 
number.? 

The relation between fl  and the particle radius a may now be seen from the Stokes- 
drag law (5.2) to be 

(5.18) 

Combination of (5.17) and (5.18) then shows that the following relation between the 

u: - 4a3p;g t = - -  
ag 81p’ ’ 

t Foscolo & Gibilaro (1984) say that ‘bubbling beds are known to revert to homogeneous 
behaviour at high voidages’. 



100 G. K .  Batchelor 

properties of the particles and the fluid must be satisfied by a fluidized bed that 
becomes marginally unstable a t  4 = &: 

(5.19) 

The value of 01 is needed for the practical interpretation of figure 3 and the relation 
(5.19). We know too little about the particle diffusivity at the values of q3 that  are 
relevant to the onset of instability to be able to chose a specific value of a, and it 
seems preferable a t  this stage to leave it as an unspecified factor as shown on the 
curves in figure 3. 01 is believed to be of order unity in the algebraic sense. 

If we assume the value of the viscosity ,u to be as for air a t  normal temperature 
and pressure, and take pp = 1 gm/cm3 as a representative particle density and 
g = 981 cm/s2, (5.18) becomes 

6 = 1.48 x lo6 (a  mm)3 (5.20) 

from which the values of a shown on the curves in figure 3 have been found. The 
largest particle radius for which the bed is not unstable a t  some value of 4 is found 
from (5.19), with these same particular values of pp and p, to be 

a = 16.0a~pm. (5.21) 

If a = I this critical size is 16.0 pm, and if a = 5 i t  is 27.4 pm. For any finer particles 
the fluidized bed (and a cloud of sedimenting particles) is stable a t  all concentrations. 
For particles of these radii the assumption of small flow Reynolds number is 
permissible. 

The range of wavenumbers for which growth occurs when N ,  > 1 is 0 < K < K,, 

and we see from (4.13) and (5.8) that  for a gas-fluidized bed K, is given by 

(5.22) 

At the value of 4 a t  which N ,  is a maximum with respect to $, this becomes 

(5 .23)  

which is shown graphically by the continuous curve in figure 4. Incidentally this 
diagram makes more specific, for the case of a gas-fluidized bed free from the com- 
plications of acceleration-reaction and Reynolds number effects, the rather vague 
general remarks in 333 and 4 about the roles of the two Froude numbers U2/ga 
and K U 2 / g .  As &( = Ui/ga)  becomesl larger, the maximum wavenumber for which 
growth occurs decreases to zero as 6-z (the continuous curve) and the maximum value 
of KU; /g  for which growth occurs increases as 6: (the broken curve). If both Uilga and 
KUi/g are small compared with unity the bed is stable, and if both are large, and of 
the same order of largeness, it  is again stable. Similar remarks apply to U2/ga and 
K U 2 / g  at a particular value of 4. 

At conditions near the critical (that is, when N -  1 < l) ,  the velocity of propagation 
of a disturbance relative to the particles is seen from (4.15) to be -@ in a gas- 
fluidized bed. With neglect of the first term in the expression (5.7) for Q and the use - 
of (5.13) this becomes 

(5.24) 
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FIGURE 4. The regions of stability and of instability in the ( K ,  [)-plane for a gas-fluidized bed a t  
6 = 9, = 0.182. K,, is the wavenumber a t  which the growth rate is zero. For points beneath the 
continuous curve (to which the left-hand ordinate scale is relevant) the bed is unstable; and 
similarly for the broken curve associated with the right-hand ordinate scale and a different non- 
dimensionalization of K .  

It is noteworthy that c, - U is independent of both K and tp in this approximation. In  
the case of a bed that becomes marginally unstable a t  just one value of tp we may put 
c = 5, = 6.09a, giving c, - U = -0.40U0. 

Finally, there is the magnitude of the growth rate. The fractional increase in 
amplitude of a growing wave in the time taken by a wave crest to propagate a 
distance of one wavelength relative to the particles is 

27tci 2nPQf(N - 1 )  -- - 
Ic,-UI P2+4Q 

(5.25) 

if we use the approximations (4.14) valid when IN- 11 6 1 and the approximations 
appropriate to a gas-fluidized bed. This function of K is zero a t  K = 0, increases 
linearly with K initially, and then turns down to become zero again a t  the neutrally 
stable wavenumber K,, like the sketch of ci in figure 1. In the linear range ci is given 
by (4.16) (in which Q may be replaced by aag) and we obtain a crude estimate of the 
maximum value of (5.25) with respect to K by evaluating (4.16) at  K = : K ~ ,  the result 
being 

n(N,- 1) ( N L -  l);(a//3);. (5.26) 

This estimate for the maximum value of 21tci/Jc,-U( depends only on N,, and is 
equal to  0.194 when N ,  = 1.2 if we put a = /3, meaning that the amplitude of a 
disturbance which originates near the bottom of a fluidized bed for which N ,  = 1.2 
has increased by a factor exp (0.194 x 10) = 6.96 a t  a height of 10 wavelengths above 
the bottom. 
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The case of a l iquid-fiuidized bed 

The conditions for instability are more complicated here, for two reasons, the first of 
which is that  the relation between U and # and a depends on the Reynolds number 
of the flow about a particle. The presence of the fluid viscosity p, in the small-R 
expression (5.18) for the particle Froude number 5 shows that the critical value of 5 
occurs a t  a much larger value of the particle radius a in a water-fluidized bed than 
in an air-fluidized bed, more than 10 times larger according to this expression, and 
a trial calculation makes it clear that  a t  conditions near the critical for instability the 
Reynolds number is no longer small. Nor could we have expected to be able to ignore 
the inertia of the fluid in a situation in which the inertia of the particles, with density 
not greatly different from that of the fluid, is important. Consequently it is necessary 
to return to (5.1) and choose for the power p a smaller and Reynolds-number- 
dependent value and to replace the Stokes-drag relation (5.2) by an empirical 
Reynolds-number-dependent drag coeficient. 

New numerical estimates which allow for Reynolds-number effects are presented 
in table 1 in a form that enables application to be made to a fluidizing fluid of any 
density and viscosity and particles of any density and size. For the purpose of this 
table the independent variable is the Reynolds number R,( = 2alU,I pf/p,) of the flow 
about an isolated falling particle, values of which are shown in column 1. Column 2 
of the table shows the corresponding value of the power p in the Richardson-Zaki 
correlation (5.1) for U as a function of # as given in the text by Wallis (1969) (with 
some upward adjustment of the values of p a t  the smaller Reynolds numbers for 
conformity with recent sedimentation observations). There are many empirical 
relations and correlations of data for the drag coeEcient of an isolated rigid sphere 
(defined as C,, = mlg”l/$u2pf U i )  over various restricted ranges of Reynolds 
number (see Clift, Grace & Weber 1978, chap. 5), but none that are accurate over the 
whole range from small to moderately large values of R,. My purpose here is to 
illuminate the various physical processes involved in instability rather than to 
provide definitive numerical relationships, and for convenience I shall chose a single 
formula for use over the range 0 < R, < 2000, which is as high as we need go for 
present purposes. In  a recent study of instability of a fluidized bed, Foscolo & 
Gibilaro (1984) recommended the ‘correlation ’ 

C,, = (0.63 + 4.901R,+)~, (5.27) 

which they attribute to Dallavalle (1948), and I have used (5.27) to obtain the 
numbers in column 3. Column 4 then gives values of the drag-slope parameter y 
defined by (3 .3 )  (with the empirically supported assumption that y does not vary 
much with q5 and so can be evaluated at q5 = 0), which is equal to 1 +0.63Ci! when 
the empirical expression (5.27) for C,, is used. The particle radius is given in terms 
of C,, and R, by 

(5.28) 

from which we obtain column 5, where v = p/pf  is the kinematic viscosity of the fluid. 
The relation between the particle Froude number [ and the drag coefficient C,, is 

(5.29) 
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1.37 
1.38 
1.56 
1.65 
1.74 
1.80 
1.85 

1.31 IWi iR,, 0.833 
1.419 0.079 0.875 
1.844 0.139 0.905 
2.652 0.275 0.956 
3.541 0.436 1.000 
4.813 0.655 1.056 
7.427 1.032 1.152 

10.55 1.366 1.250 
15.29 1.696 1.382 
25.66 2.126 1.500 
38.65 2.401 1.571 
58.98 2.635 1.571 

6.09 
5.96 
5.87 
5.74 
5.62 
5.48 
5.26 
5.06 
4.82 
4.63 
4.52 
4.52 

TABLE 1. Parameters of a uniform bed of solid spheres fluidized by either a gas [in which case only 
the first row of numbers is relevant) or a liquid. The condition that the bed is unstable for some 
values of K and $ is 6 > k,. 

from which column 6 is obtained. Thus columns 5 and 6 specify a unique relationship 
between 6 and a when pp/pr and v are known. 

Explanation of the remaining columns 7 and 8 in table 1 raises the second 
complicating feature of a liquid-fluidized bed, which is that  acceleration-reaction 
effects are not obviously negligible. We return to the general expression for N ,  in 
(5.12), and note that estimates of the term d($HU2)/d$ from the suggested 
expression (5.5) show that it makes a relatively small contribution to the 
denominator of (5.12) a t  conditions near critical (that is, when the numerator and 
denominator are nearly equal) and as a rough appriximation, which is less accurate 
than in the case of a gas-fluidized bed, may be neglected. Moreover, since the 
acceleration-reaction terms in (5.12) are never dominant, the values of 5 (defined in 
(5.13)) a t  which N ,  is near unity will be of the same general magnitude as in the case 
of a gas-fluidized bed. The numbers in column 6 of table 1 make it clear that this is 
possible for values of pp/pf mostly well above unity, which tells us that the 
acceleration-reaction terms may be small at conditions near the critical. We shall 
therefore drop provisionally the two terms in (5.12) coming from the expression 
(5.10) for 6, and check later that  the results are consistent with this. Thus (5.12) 

(5.30) 
reduces to 

the other acceleration-reaction parameter, 8, is not so likely to be negligible and in 
any event its retention does not cause much difficulty. 

As before, we are interested in the maximum value of N ,  as q5 varies. 0 increases 
monotonically with q5 according to (5.10), but the total variation is only about 
1.5p,/pp, which is almost always less than unity. Thus, if 01 is again assumed to be 
independent of 4, the location of the maximum of N ,  is determined mainly by the 
opposition of the two factors $z and (I - $ ) 2 p - 1 )  and so is near $ = & = p-l .  The 
value of the maximum is approximately 

E N ,  = -( 1 + 8) p'$'( 1 - $)2(P-1) ; 
a: 

(5.31) 
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FIGURE 5 .  The relation between the particle density and radius for a bed that is marginally 
unstable a t  one value of q5, for five different assumed values of the diffusivity coefficient a. The unit 
of length for the radius, viz. ( v z / g ) s ,  is 0.0468 mm in the case of a bed fluidized with water and 
0.284 mrn in the case of air. 

where (5.32) 

and the condition for growth of disturbances a t  some values of $ near $ = $m (and 
at some wavenumbers near K = 0) is 

Column 7 of table 1 shows the values of O , p , / ~ ,  according to  (5.32), and then in 
column 8 there are values of cc(l +$,)/a according to (5.33). 

The question whether a fluidized bed becomes unstable a t  some values of $ may 
now be answered by comparing columns 6 and 8 to see whether < is larger or smaller 
than the critical value <,. This comparison requires a knowledge of the density ratio 
pp/p f ,  the particle radius a ,  and the kinematic viscosity of the fluid v ,  from which 
the value of a@, I@[ /pf v2)i  may be calculated. This specifies the relevant row (or 
interpolation between two rows) in table 1, and the entries in columns 6, 7 and 8 are 
noted. The value of [ follows from the entry in column 6, and then after a selection 
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of the value of the diffusivity coefficient a,  the evidence for which is scanty a t  the 
moment but may be expected to improve, 5, is found from the entries in columns 7 
and 8. If 6 is very close to t,, the fluidized bed is marginally unstable a t  a degree of 
expansion corresponding to $ = $m, and if [ > C,, the bed is unstable for a range of 
values of $ that includes $ = $m and which increases in extent as [Itc increases. 

The way in which the two non-dimensional parameters pp/pf and a(g/u2))"  control 
the stability of the bed is shown by figure 5. Each of the curves in figure 5 is a line 
of neutral or marginal stability on which t = [, for a particular assumed value of a,  
and was obtained by first determining pp/pf from a comparison of columns 6 and 8 
and then a(g/v2)i  from column 5 .  Continuation of the curves in figure 5 to larger 
values of a(g/uz) i  would require an expression for C,, that is more accurate at the 
larger Reynolds numbers than (5.27). 

Now we know that the value of pp/pf for a marginally unstable bed is seldom less 
than 2 we may return to (5.12) and confirm that the two terms coming from the 
parameter t; are indeed relatively small (the one in the numerator of (5.12) being 
about 0.05 times the term retained when pp/pf = 2) as assumed provisionally. On the 
other hand i t  is evident from the numbers in column 7 of table 1 that neglect of the 
acceleration-reaction parameter 8 would be justified quantitatively only as a rough 
approximation. The acceleration reaction has no qualitative influence on the 
stability properties of a liquid-fluidized bed of solid particles, but further theoretical 
investigation of the direct effect of fluid inertia on the force acting on particles in 
unsteady motion would be useful for quantitative purposes. 

Estimates of the range of wavenumbers for which growth occurs when N ,  > 1,  the 
wave speed of disturbances, and the growth rate may be made for a liquid-fluidized 
bed with straightforward modifications of the procedure used for a gas-fluidized 
bed. 

6. Recapitulation, and some connections with previous work 
It has been found possible to formulate equations governing the unsteady one- 

dimensional mean motion of the particles in a gas- or liquid-fluidized bed without 
invoking any major untestable hypotheses. This is rare in the literature of two-phase 
flow and no doubt is a consequence of the assumed one-dimensionality of the mean 
motion, ThQ form of these equations that is appropriate for a perturbed uniform 
fluidized bed is given in (2.2) and (3.10) and contains five parameters, viz. U ,  H ,  D, 
q and C, all expected to be functions of $ and the particle Reynolds number and the 
density ratio pp/pf. The mean particle velocity U ( $ )  is known empirically, and i t  
should be possible to make measurements of H ( $ )  (the non-dimensional mean-square 
particle velocity fluctuation in a uniform fluidized bed) although there are few 
published data. D is the gradient diffusivity of the particles resulting from their 
hydrodynamically induced velocity fluctuations, and is a fundamental measurable 
quantity likely to be relevant to a variety of processes and phenomena associated 
with particle dispersions; recognition of its important role in the present problem is 
a key feature of this paper. Both H and D occur in the expression for the effective 
bulk modulus of elasticity of the particle configuration (see (3.11)),  and it appeared 
from rough estimates of their magnitudes that the term containing H is relatively 
small a t  conditions near critical for instability. This is important for the later 
stability calculations, and confirmation of the estimates is desirable. The fourth 
parameter q,  the particle viscosity, will not be easy to measure, but approximahe 
calculations like those made in the kinetic theory of gases may yield a reasonable 
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estimate ; fortunately 7 plays only the secondary role of damping the disturbances 
with large wavenumbers. The logical foundation of the terms in the equation of 
motion containing the acceleration-reaction parameter C is not satisfactory, but 
fortunately it seems that pp/pf is usually well above unity for marginally unstable 
fluidized beds and that acceleration-reaction effects have only a minor quantitative 
influence on the conditions for instability of a liquid-fluidized bed of solid particles. 
Thus U and D are the most relevant parameters in the stability problem, and data 
are lacking only for D .  

The first calculations of the behaviour of a small disturbance to a uniform fluidized 
bed were made independently by Ruckenstein (1962), Jackson (1963) and Pigford & 
Baron (1965). In  the introduction to his paper Jackson wrote: ‘It is the object of the 
present work to develop a set of equations of motion for a fluidized bed based on a 
realistic picture of the system as an assembly of particles in interaction with a flowing 
fluid ’, which is precisely the approach of the present paper. Jackson began with a 
momentum balance equation like (2.3) but omitted the first and fourth terms on the 
right-hand side representing the transfer of momentum across the surface of the 
control volume and the interparticle force exerted across that surface. This 
corresponds to putting H ,  7 and D equal to zero in (3.10), with the consequences that 
Q = 0, N is infinite, and the growth rate  KC^ always has one positive root with a 
maximum a t  K +  00. Despite their very simple form, Jackson’s equations for the 
behaviour of a small disturbance revealed the possibility of growth due to the effect 
of particle inertia and some comparative features such as a larger growth rate for a 
gas- than for a liquid-fluidized bed, in accordance with observation. The present 
paper is in direct succession to this pioneering work by Jackson and makes it more 
complete. 

Virtually all later investigations of the behaviour of a small disturbance to a 
uniform fluidized bed (see for example Murray 1965; Molerus 1967; Anderson & 
Jackson 1968; Garg & Pritchett 1975; Homsy, El-Kaissy & Didwania 1980; 
Needham & Merkin 1983 ; and, for a review, Jackson 1985), as well as the early paper 
by Pigford & Baron (1965), have taken a rather different line and have used 
governing equations that are to some extent hypothesized rather than ‘based on a 
realistic picture of the system as an assembly of particles in interaction with a flowing 
fluid’. The usual procedure has been to write the equation of motion for each of the 
two ‘phases’ of the system, the particles and the fluid, as if they were continuous 
media occupying the whole space, with inclusion of a body force representing the 
effect of the presence of the other phase, and to ascribe physical and rheological 
properties to each of the two media on a heuristic basis. Some of these rheological 
properties of the two hypothetical continuous media cannot be deduced or measured, 
because they are not well-defined physically. One can go part way towards finding 
an equation of motion for one of the phases which formally resembles an equation for 
a continuum by taking an average over the volume occupied instantaneously by that 
phase in the manner described by Drew (1983), but his procedure achieves rigour 
a t  the cost of introducing the intractable problem of closure of averages of a 
complicated kind. 

It is not possible to describe any of the quantitative results obtained in these 
papers in terms of the present analysis, because the governing dynamical equations 
are different and contain different parameters. Many of the previously assumed 
governing equations contain no term representing resistance to  compression of the 
particle configuration, and so yield the result that a fluidized bed is always unstable. 
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However Garg & Pritchett (1975) recognized the close connection between the degree 
of instability of the bed and the assumed magnitude of the effective bulk modulus of 
elasticity of the particles. Since this work there has been speculation about possible 
physical origins of a large effective bulk modulus of elasticity of the fine powder 
particles which are known to be stable for a t  least small degrees of expansion of a gas- 
fluidized bed. 

A quite different stream of work has started from Wallis’s (1962, 1969) perceptive 
deduction from simple model equations that the criterion for instability is that the 
kinematic wave speed exceeds the dynamic wave speed (relative to the particles in 
both cases), a criterion that we have shown to be correct for the more complete and 
more specific form of the governing equations for a fluidized bed if acceleration- 
reaction effects are negligible. Quantitative use of this criterion requires some insight 
into the physical origin of the effective elasticity of the particle configuration and a 
calculation (or an appeal to observational data) of the numerical value of the bulk 
modulus as a function of q5. Attempts to calculate the effective bulk modulus of 
elasticity of the particle configuration from heuristic mechanical models have been 
made (Verloop & Heertjes 1970; Foscolo & Gibilaro 1984; Poscolo & Gibilaro 1987), 
but all these calculations are flawed by the misconception that the elasticity of the 
parkicle configuration is related to the dependence of the mean fluid drag force on 
the particle concentration. What is needed is an estimate of the dependence of the 
particle stress, i.e. the rate of transfer of particle momentum plus the force exerted 
between the particles on the two sides of unit area of a horizontal surface, on the 
concentration. A calculation of the particle stress would be very difficult, and it is 
fortunate that, as seen herein, the more important of the two contributions to  this 
stress is related to the measurable gradient diffusivity of particles. 

Wallis initially likened the crisis resulting from equality of the kinematic and 
dynamic wave speeds to the formation of a shock wave when the speed of a body 
through a gas reaches sonic speed, and the notion that bubbles are in some way an 
outcome of the formation of shocks or discontinuities in particle concentration has 
been taken up by some authors (Verloop & Heertjes 1970; Fanucci, Ness & Yrn 
1979). It is undoubtedly true that nonlinear terms in the particle-conservation 
equation lead to steepening of the rearward-facing slopes in the concentration 
distribution and to  the gradual formation of a discontinuity, as Kynch (1952) 
showed, b u t  it  does not seem likely that growth of small disturbances in a uniform 
fluidized bed, which is a linear process, is connected with the formation of 
discontinuities. The existence of dynamic waves is not actually necessary for 
instability of a fluidized bed, as Jackson (1963) unintentionally showed from 
equations containing no term equivalent to a pressure gradient in a gas. Growth of 
small disturbances in a bed requires only the existence of kinematic waves and 
particle inertia, and results from a change in the phase relationship between 
fluctuations in the mean particle velocity and the concentration brought about by 
inertia forces. Elasticity of the particles (that is, resistance to confinement to a 
smaller volume of space) hinders the growth by dispersing concentration fluctuations, 
and, if the bulk modulus is large enough, may suppress it. Analogies such as sound 
waves in a gas and traffic flow (Wallis 1969) seem to be rather wide of the mark. 

A quantitative comparison of the results of the present theory with observation is 
outside the scope of this paper, but we may note that the specific criterion for 
instability found by Foscolo & Gibilaro (1984) and compared with numerous 
observations happens to be not very different numerically from the criterion 
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N ,  > 1 found herein. Their version of Wallis’s criterion for growth of disturbances, 
in niy notattion, is 

and the ratio of the left-hand side of this inequality to the expression for N ,  given 
in (5.30) is 

(The near identity of the algebraic forms of thc two criteria is not too surprising, since 
Foscolo & Gibilaro have the correct expression for the kinematic wave speed, and the 
dynamic wave speed is likely to be found to be proportional to (a@): on dimensional 
grounds.) Since y and 1 + 8 lie between 1 and 2 and a is of order unity, the ratio (6.2) 
is not very far from unity for values of Q, between 0.1 and 0.5. Foscolo & Gibilaro 
made a comparison of their criterion with all the available observations of the 
occurrence or non-occurrence of bubbling (assumed to occur whenever a bed is 
unstable?) in both gas- and liquid-fluidized beds, and found that ‘the agreement is 
quite satisfactory’. Reference should be made to Foscolo & Gibilaro (1984) for the 
details. Thc data do not define the onset of bubbling sharply, nor is the value of a 
in my theory known to better than the order of magnitude, so the agreement found 
by Foscolo & Gibilaro implies only that my instability criterion is generally 
compatible with observations of the occurrence of bubbling. 

The predictions of the present theory concerning the properties of amplified 
disturbances (none of which are given by Wallis’s criterion), such as the wavelength 
for maximum growth rate, the growth rate, and the disturbance wave speed, may 
also be of some interest in practice, and can be calculated without difficulty when the 
values of a and, less importantly, of 7 are known or can be estimated. Some valuable 
direct observations of these properties of growing disturbances in several different 
liquid-fluidized beds were made by El-Kaissy & Homsy (1976). However, a 
comparison with the present theory is not yet possible, because the values of q5 in 
their experiments were larger than 0.52 in every case and the values of CI. a t  these very 
high concentrations arc quite unknown (and may not be approximately constant as 
provisionally assumed herein). 

7. Index of symbols 
1 have not followed the rather elaborate notation relating to fluidized beds that is 

commonly used by chemical engineers, and consequently the paper may a t  first be 
a little difficult to read. The following index showing the meaning of a symbol or the 
number of the equation in which it is first introduced and defined may help. 

Some of the symbols must be interpreted in the light of the conventions regarding 
the reference frame, viz. 

(i) the vertical position coordinate x and the vertical velocity component are 
positive when directed downwards, like gravity ; 

(ii) the axes of reference are such that the mean flux of material volume across a 
horizontal plane surface is zero, so the mean particle velocity in a uniform fluidized 
bed is a downward velocity equal in magnitude to what is usually called the 

t This assumption may not always be valid. El-Kaissy I% Homsy (1976) have observed plane- 
wave disturbances with increasing amplitude in liquid-fluidized beds which do not evolve into 
bubble-like structures. 
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'superficial fluid velocity' in a real fluidized bed referred to axes fixed in the 
distributor plate. 

a 
B 

C 

D 

c 

CD 

F h  

s 
H 
K 
m 
n 
N 
N m  

Q 
5, Q 

R 
s 
V 
U 

V' 
W 

V 

8, w 

Roman symbols Greek symbols 

= g(P,-Pf)/Pp 
(3.5) 
~I 

(3.15) 
particle mass 
particle number density 

value of N a t  K = K, 
(4.10) 

(5.1) 
(4.5) 

(3.2) 
(2.12) 
mean particle velocity 
_ _ _  in a uniform bed 
velocity fluctuation 
(3.12) 
(3.15) 
(4.5) 

(3.11), (5.7) 

CL 

P 

4 
9' 
9, 

5 

7' 
I" ,  I"' 

8.5 
0, 

9 u . x e s  

CP 
h 
m 
n 
r, i 
0 
1 

Y 

ru 
V 

I 

K 

Km 

C 

(5.6) 
(5.8) 
(3.3) 
= mn/Pp 
(3.12) 

= d P f  

(3.8) 

(3.6) 
(4.1) 
value of K a t  which N is maximum 
(2.1 1) 
(5.32) 

value of 4 a t  which N ,  is maximum 
fluid viscosity 

(5.13) 

(2.14) 

critical value 
value a t  close packing 
valur for a homogeneous bed 
refers to a maximum 
value for neutral stability 
real and imaginary parts 
value for an isolated particle 
value a t  4 = q5, 

I am glad to acknowledge the considerable help with the preparation of this paper 
that I have received from Professor Roy Jackson of Princeton University. 
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